Grundlagen zur Kühlung
elektronischer Systeme

Moderne Hochleistungselektronik braucht Kühlung. Die Fertigung von dafür geeigneten Druckgusskühlkörpern lohnt sich aufgrund der hohen Werkzeugkosten erst bei hohen Stückzahlen. Gefragt sind Lösungen, die ebenso leistungsfähig sind und gleichzeitig bereits in kleinen Stückzahlen wirtschaftlich gefertigt werden können. Modular aufgebaute lüftergestützte Hochleistungskühlkörper ermöglichen die Realisierung individueller Lösungen, ohne hohe Werkzeugkosten aufbringen zu müssen.
Landläufig wird angenommen, dass Kühlkörper der Abfuhr der durch Verlustleistung in einem elektronischen Bauelement erzeugten Wärme dienen. Tatsächlich jedoch ist ihre Aufgabe die Vergrößerung der Halbleiteroberfläche und damit die Verteilung der Bauteiltemperatur auf eine wesentlich größere Oberfläche. Dadurch sinkt die Temperatur des Halbleiters und seine Lebensdauererwartung steigt. Wird nicht gekühlt, altert und versagt das Bauteil nach kürzester Zeit.

Theoretische Grundlagen der Wärmeleitung

Die in Wärme umgesetzte Verlustleistung eines elektronischen Bauelements errechnet sich aus dem materialabhängigen Wärmeleitkoeffizienten , der Bauteilgeometrie (Grundfläche A und Länge ) und der Temperaturdifferenz T über die Länge bzw. zwischen dem Kühlkörper und der ihn umgebenden Luft nach der Formel:

P = · A/ · T

Durch die Materialabhängigkeit des Wärmeleitkoeffizienten unterscheiden sich die verschiedenen Stoffe hinsichtlich ihrer Wärmeleitfähigkeit. So leitet Kupfer mit einem -Wert von 394W/(m · °C) die Wärme etwa doppelt so schnell wie Aluminium, das lediglich über einen Wärmeleitkoeffizienten von 222W/(m · °C) verfügt. Und Wasser ( = 0,60W/(m · °C)) leitet Wärme bei gleicher Strömungsgeschwindigkeit gut 20 Mal schneller als Luft ( = 0,026W/(m · °C)). Daraus ergibt sich logisch die Eignung der Materialien als Kühlkörper. Luft ist relativ ineffizient. Ein wassergekühltes Kupferelement ist dagegen eine extrem effiziente Kühllösung. Die entscheidende Kenngröße eines Kühlelements und ein Maß für die Dimensionierung und Auswahl eines geeigneten Kühlkörpers ist sein Wärmewiderstand Rth. Er gibt an, wie viel Grad Temperaturdifferenz in Grad Celsius erforderlich sind, um die Wärmeleistung von einem Watt zu übertragen und errechnet sich aus der oben genannten Formel. Demnach ist

Rth = /· bzw. Rth = T/P

Je niedriger der Wärmewiderstand, desto höher der Wärmefluss und desto besser die kühlende Wirkung. Ein idealer Kühlkörper besäße einen Wärmewiderstand von Rth=0. Damit wäre die Temperaturdifferenz T zwischen dem Kühlelement und der ihn umgebenen Luft ebenfalls gleich Null und die Ankopplung ideal. Doch Metalle wie Kupfer oder Aluminium und Gase bzw. Luft verhalten sich bei Erwärmung völlig unterschiedlich. Wird ein metallischer Festkörper erhitzt, beginnen seine Atome um ihre feste Ruhelage im Kristallgitter zu schwingen. Diese Schwingungen werden bei extremer Hitze so stark, dass die Atome ihre Gitterplätze verlassen. Das Metall schmilzt. In Luft bzw. Gasen erzeugt Wärme dagegen eine geradlinige Bewegung der Luftmoleküle. In Bewegung gesetzt, stoßen die einzelnen Moleküle zusammen und geben ihren Bewegungsimpuls weiter. Auf diese Weise steigt mit zunehmender Temperatur des Gases die (mittlere) Geschwindigkeit der Gasmoleküle. Da überdies Festkörper eine wesentlich höhere Dichte, also Atome pro Volumeneinheit, aufweisen als ein Gas, kann die Steigerung der Atomschwingung bei Wärmezufuhr sehr schnell an die Nachbaratome weitergegeben werden. Bei Gasen müssen die Moleküle wesentlich größere Distanzen zurücklegen, um ein benachbartes Molekül zu treffen und ihm seine höhere Geschwindigkeit durch Stoß zu übertragen. Demzufolge leiten Festkörper Wärme besser als Gase. Damit lassen sich die wesentlich höheren -Werte von Aluminium und Kupfer gegenüber Luft (und Wasser) erklären – und auch die Notwendigkeit zur aktiven Kühlung.

Kühlungsarten

Bei Kühlkörpern kann Wärme nur in unmittelbarer Nähe der Grenze zwischen Feststoff und Umgebungsluft abgegeben werden. Diese Sperrschicht beträgt weniger als eintausendstel Millimeter (1/1000mm). Durch das Wegführen der Wärme von der Quelle sinkt die Sperrschichttemperatur. Bei der passiven Kühlung geschieht dies durch natürliche Konvektion: Die erwärmte Luft steigt unmittelbar an der Grenze ‚Festkörper/Gas‘ auf und wird durch die nachfolgende, kühlere Luft ersetzt. Diese Art der Kühlung wäre ideal, weil es die Anzahl der Bauteile in einem elektrischen Gerät und damit den Wartungsaufwand reduziert. Leider reicht dieser Kühleffekt in vielen Applikationen jedoch nicht aus. Um die Temperatur deutlicher zu senken, muss die erwärmte Luft aktiv vom Festkörper weg bewegt und gegen kühlere Luft ausgetauscht werden. Dies geschieht in der Praxis durch auf den Kühlkörper montierte Lüfter. Für viele Anwendungen mit Hochleistungselektronik reicht jedoch selbst diese Kühlungsart nicht aus. Dann sind Lösungen auf der Basis von Flüssigkeitskühlkörpern gefragt, die die entstehende Wärme mit Hilfe von Flüssigkeit ‚wegschwemmen‘.

Das könnte Sie auch interessieren

Ihr Bau begann im Mai 1993, über 10 Millionen Menschen nutzen sie nun Tag für Tag, um durch das verzweigte urbane Netz der 24 Millionen Metropole am Yangtze zu gelangen. Die Shanghai Metro zählt mit ihrem rund 640 km weiten Netz und 393 Stationen zu den größten der Welt. Ein Projekt der Superlative – schnell, modern und zuverlässig – und es wächst weiter. Bis Ende 2020 wird das gesamte Netz auf 800 Kilometer ausgeweitet sein.

Anzeige

Standards für den Austausch von Projektdaten gewinnen massiv an Bedeutung: Der CAE-Spezialist AmpereSoft mit Sitz in Bonn engagiert sich deshalb jetzt als Mitglied bei AutomationML.

Am 25. Oktober ging mit der Veranstaltung in Bad Gögging bei Regensburg die diesjährige Reihe des Network SCHALTSCHRANKBAU erfolgreich zu Ende. Mit insgesamt rund 460 Teilnehmern an fünf Orten im gesamten Bundesgebiet war das 2018 erstmals durchgeführte Event ein voller Erfolg. Die anwesenden Schaltanlagenbauer und -planer informierten sich auf der eintägigen Veranstaltung in kompakter Form über die neuesten Entwicklungen ihrer Branche.

Anzeige
Anzeige

Condition Monitoring ist ein wesentlicher Bestandteil der Instandhaltungsplanung von Anlagen. Dies gilt nicht nur für Schaltschränke und

Gehäuse in Industrieanlagen, sondern für eine Vielzahl verschiedenster Anwendungen, in denen geregelte Prozesse ablaufen. Stegos kompakter Smart Sensor CSS 014 misst die beiden wichtigen Parameter Temperatur und Luftfeuchte und hilft, das geeignete Klima zu wahren.

Im September konnte der Auftragseingang im Maschinen- und Anlagenbau lediglich sein Vorjahresniveau halten, für eine Plusrate wie in den Vormonaten hat es nicht gereicht.

Anzeige

Für Applikationen unter widrigen Bedingungen hat Feas die Schaltnetzteile der Serien SNT126-K entwickelt. Trotz ihrer kompakten Abmessungen halten sie aufgrund ihrer soliden Konstruktion störenden Einflüssen wie Kälte, Hitze, Verschmutzungen oder starke Vibrationen stand.

„Wir haben im dritten Quartal nachhaltiges Wachstum erzielt“, sagte ABB CEO Ulrich Spiesshofer (Foto). ABB erzielte in diesem Zeitraum einen Umsatz in Höhe von 9,3Mrd.€, das sind 3% mehr als im Vorjahr. Dazu beigetragen habe vor allem die Division Robotik und Antriebe (Umsatz: +7%, Auftragseingang: +15%). In der Industrieautomation erreichte ABB ein Umsatzplus von 3% und ein Auftragsplus von 7%. Die Umsätze im Bereich Elektrifzierungsprodukte lagen ebenfalls bei +3%, der Auftragseingang legte um 6% zu. Insgesamt erhöhte sich der Auftragseingang im 3. Quartal um 9% auf 8,9Mrd.€.

Gleichspannung wird in Zukunft in vielen Bereichen der Energieversorgung von elektronischen Geräten eine wichtige Rolle spielen. Die neuen, aber auch die bestehenden Gleichspannungssysteme brauchen neue Überspannungsschutzgeräte, die aktuelle Sicherheitsanforderungen erfüllen.

In Zeiten voller Auftragsbücher sowie zunehmendem Fachkräftemangel müssen Wertschöpfungsprozesse immer schneller, präziser und wirtschaftlicher erfolgen. Dies gilt auch für den Schaltschrankbau. Die Digitalisierung ist dabei ein wichtiger Faktor. Im Interview erklärt Dr. Sebastian Durst, Leiter der Division Cabinet Products bei Weidmüller, wie das Unternehmen den Anforderungen der Digitalisierung begegnet und welche konkreten Angebote bereits existieren.

Für die Stadtwerke Hammelburg hat ABB ein Retrofit-Kit entwickelt, mit dem sich in die Jahre gekommene Kompaktleistungsschalter der Baureihe NZM ersetzen lassen. Hauptbestandteil des zertifizierten Kits ist der Kompaktleistungsschalter Tmax T7. Die neue Lösung eignet sich für den schnellen und einfachen Austausch.

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige