Ende der Übergangsfrist: aktualisierte DIN VDE0100-420 in Kraft

Seit Dezember 2017 normativ vorgeschrieben

Zum 18. Dezember 2017 ist die Übergangsfrist der aktualisierten Fassung der DIN VDE0100-420:2016-2 ausgelaufen. Seit diesem Zeitpunkt sind damit normenseitig in verschiedenen Niederspannungsanlagen sogenannte Brandschutzschalter (AFDD) zur Verhinderung von Bränden durch Fehlerlichtbögen zu installieren. Welche Anlagen und Anwendungsbereiche im Einzelnen von dieser Norm betroffen sind und welche normativen Anforderungen zulässige Brandschutzschalter erfüllen müssen, beschreibt der folgende Beitrag. Dabei ist die seit Februar 2018 gültige Berichtigung der DIN VDE0100-420:2016-2 bereits berücksichtigt.

 Zwei Brandschutzschalter als Stellvertreter. (Bild: Hager Vertriebsgesellschaft mbH & Co. KG)

Zwei Brandschutzschalter als Stellvertreter. (Bild: Hager Vertriebsgesellschaft mbH & Co. KG)

Bei der DIN VDE0100-420 (IEC60364-4-42 (HD60364-4-42)) handelt es sich um eine Installationsnorm zur Errichtung von Niederspannungsanlagen. Sie beschreibt in Teil 4-42 geeignete Schutzmaßnahmen, die gegen thermische Auswirkungen aufgrund von Fehlerlichtbögen zu ergreifen sind. Zum Hintergrund: Auslöser von Fehlerlichtbögen können schadhafte Leitungen, Isolationsfehler oder lose Kontaktstellen sein, die durch mechanische bzw. thermische Belastungen, Alterung oder Verschmutzungen auftreten können. Typische Fälle sind angebohrte Leitungen, unzulässige Biegeradien von Leitungen, Vibrationen, durch Möbel unachtsam abgeklemmte Kabel oder auch Nagetierverbisse. Beim Schutz vor den Auswirkungen von Fehlerlichtbögen bezieht sich die Norm ausdrücklich auf Endstromkreise von einphasigen Wechselspannungssystemen mit Betriebsströmen bis 16A, nicht jedoch auf dreiphasige Wechselspannungssysteme (Drehstromkreise). Anzuwenden ist die Norm ausschließlich bei Neuanlagen bzw. bei Bestandsanlagen, die umfassend geändert oder erweitert werden. Das heißt: Altanlagen müssen auch nach dem Ende der Übergangsfrist nicht zwingend mit Brandschutzschaltern an die neue Normenlage angepasst werden.

 Das neue Hager AFDD-Angebot im Überblick für alle Anwendungen (Bild: Hager Vertriebsgesellschaft mbH & Co. KG)

Das neue Hager AFDD-Angebot im Überblick für alle Anwendungen (Bild: Hager Vertriebsgesellschaft mbH & Co. KG)

Anwendungsbereiche der Norm

Die Norm unterscheidet Bereiche, in denen eine Ausstattung mit Brandschutzschaltern vorgeschrieben ist und solche, in denen lediglich eine Empfehlung für den Einbau besteht. Vorgeschrieben ist der Einbau von Brandschutzschaltern u.a. in Endstromkreisen von Schlaf- und Aufenthaltsräumen in Kindertagesstätten, Seniorenheimen oder auch barrierefreien Wohnungen nach DIN 18040-2. Darüber hinaus besteht Einbaupflicht in Räumen oder Orten mit einem Feuerrisiko durch verarbeitete oder gelagerte Materialien. Dazu zählen Papierfabriken, Druckereien, Schreinereien, Sägewerke und Scheunen. Gleiches gilt für Gebäude, die überwiegend aus brennbaren Baustoffen bestehen wie z.B. Holzhäuser und Gebäude in Leichtbauweise (Fertighäuser). Aber auch für Einrichtungen mit unersetzbaren Gütern von hohem Wert wie Museen, Nationaldenkmäler oder Rechenzentren gilt die Einbaupflicht sowie außerdem für öffentliche Gebäude wie Bahnhöfe oder Flughäfen. In diesem Zusammenhang wichtig: Die Einstufung des Gebäudes oder des Ortes entsprechend dem im Anwendungsbereich der Norm genannten Typen liegt in der Verantwortung des Bauherren/Eigentümers der elektrischen Anlage. Dieser sollte zur Bewertung gegebenenfalls eine fachkundige Person hinzuziehen, die dafür nach dem Baurecht geeignet ist. Lediglich empfohlen hingegen ist der Einsatz in Endstromkreisen von Räumen mit Schlafgelegenheiten, in Endstromkreisen mit hohen Anschlussleistungen (z.B. Waschmaschinen) sowie in Räumen und Orten mit Feuer verbreitenden Strukturen bzw. in Gebäuden, bei denen die Form und Ausdehnung die Ausbreitung von Feuer erleichtert – beispielsweise durch den Kamineffekt bei Hochhäusern. Daneben empfiehlt die Norm den Einsatz von Brandschutzschaltern für anlagentechnische Einrichtungen wie Zwangsbelüftungen sowie in Endstromkreisen von Verbrauchern mit hoher Anschlussleistung wie Waschmaschinen, Trocknern und Geschirrspülern. Nicht im Anwendungsbereich der Norm befinden sich medizinisch genutzte Räume. Dementsprechend müssen beispielsweise die Endstromkreise in Behandlungszimmern von Arzt- und Zahnarztpraxen oder auch in Senioren- und Pflegeheimen sowie in Krankenhäusern nicht mit AFDDs ausgestattet werden. Zudem kann auf AFDDs verzichtet werden, wenn eine Unterbrechung der Versorgung eine Gefahr oder einen Schaden verursachen würde. Das gilt beispielsweise bei IT-Systemen oder bei elektrischen Anlagen für Sicherheitszwecke wie Sicherheitsbeleuchtungen.

Zulässige Brandschutzschalter nach VDE0665-10:2014-8

In der Produktnorm VDE0665-10:2014-8 (IEC/EN62606) sind die allgemeinen Anforderungen an Fehlerlichtbogen-Schutzeinrichtungen beschrieben, mit denen sich der in der DIN VDE0100-420 geforderte Schutz erzielen lässt. Bei diesen Geräten unterscheidet die Produktnorm zwei zulässige Ausführungen. Dies sind zum einen kompakte Einrichtungen, die aus einer Fehlerlichtbogen-Erfassungseinheit und einer Ausschaltvorrichtung oder einer Überstrom- und/oder Fehlerstrom-Schutzeinrichtung bestehen. Zum anderen sind auch separate Fehlerlichtbogen-Erfassungseinheiten zulässig, die nachträglich mit einer auslösenden Schutzeinrichtung zusammengebaut werden. Die Kompaktbauweise besitzt jedoch den Vorteil einer deutlich schnelleren und komfortableren Montage. Solche Geräte bietet beispielsweise Hager an. Die Einheit zur Fehlerlichtbogenerkennung dieser Geräte verfügt über keinen physikalischen Auslöser wie LS- oder FI-Schalter, sondern über eine mikroprozessorgesteuerter Messtechnik. Der auf gängige Verbraucher abgestimmte Software-Algorithmus überwacht permanent die Sinuswellen von Strom und Spannung sowie über 120 daraus generierte Parameter einschließlich deren Wechselwirkung. Detektieren die Schalter einen Fehlerlichtbogen, schalten sie den Stromkreis sofort ab. Dabei bieten die Geräte dieses Herstellers sowohl seriellen als auch parallelen Fehlerlichtbogenschutz. Serielle Fehlerlichtbögen entstehen, wenn ein defekter Leiter oder eine lose Kontaktstelle in Reihe mit dem Verbraucher im Stromkreis liegt; parallele Fehlerlichtbögen hingegen treten zwischen Außenleiter und Neutralleiter sowie zwischen Außenleiter und Schutzleiter auf. Der Fehlerlichtbogen entsteht hier also durch einen Überschlag zwischen zwei Leitern. Neben der Erkennung von seriellen und parallelen Fehlerlichtbögen sind die Geräte zudem in der Lage, Fehlerlichtbögen von unbedenklichen Betriebslichtbögen wie dem Bürstenfeuer von Bohrmaschinen zu unterscheiden, so dass Fehlauslösungen vermieden werden. Für zusätzliche Sicherheit sorgt die integrierte Überspannungsschutzfunktion, die bei Spannungswerten >275V auslöst, während die elektronische Differenzstrom-Messung (In = 300mA) einen erweiterten vorbeugenden Brandschutz in Stromkreisen ohne FI-Schutz bietet. Auch wenn diese erweiterten Schutzfunktionen zwar keinen Ersatz für entsprechende FI-Schalter darstellen, so erhöhen sie dennoch die Sicherheit in den angeschlossenen Stromkreisen.

 

 AFDD mit Anbauzubehör aus dem LS- bzw. FI/LS-Programm (Bild: Hager Vertriebsgesellschaft mbH & Co. KG)

AFDD mit Anbauzubehör aus dem LS- bzw. FI/LS-Programm (Bild: Hager Vertriebsgesellschaft mbH & Co. KG)

Das könnte Sie auch interessieren

Interview mit Markus Hettig, Vice President Building Business DACH bei Schneider Electric.

„Durch die Verwendung nicht-linearer Verbraucher häuften sich Oberwellen in elektrischen Anlagen.“ Markus Hettig, Vice President Building Business DACH (Bild: Schneider Electric GmbH)

Markus Hettig: Durch die Fortschritte beim Thema Energieeffizienz gibt es derzeit in Deutschland das Bestreben, energiefreundliche Verbraucher zu installieren. Ein Beispiel ist das Verbot von Halogenlampen und deren Ersatz durch LED-Leuchten. Allerdings handelt es sich bei LED-Leuchten um nicht-lineare Verbraucher. Auch ein elektronischer Frequenzumrichter, mit dem ich eine klassische Stern-Dreieck-Schaltung ersetze, ist nicht-linear. Diese nicht-linearen Lasten aufsummiert, ergeben eine sogenannte Multiplikation. Dies bedeutet: Oberschwingungen, die von verschiedenen nicht-linearen Verbrauchern produziert werden, können sich unter Umständen durch Überlagerung verstärken. Dabei kann es zu Störungen innerhalb einer elektrischen Anlage kommen. Dies kann sich in einem Anlagenausfall oder einem ungewollten Schaltvorgang manifestieren. Je mehr wir also die Energieeffizienz fördern, desto mehr ungewollte elektrotechnische Phänomene können in den Anlagen auftreten. Da wir an einem Netzwerk, sprich der Energieversorgung angekoppelt sind, können diese nicht-linearen Lasten auch das Gebäude verlassen.

Hettig: Angenommen Sie wohnen in einem Haus in der Nähe eines kleinen Industriebetriebs, dann kann es sein, dass dieser Industriebetrieb eine Netzverschmutzung in mein Haus importiert. Dies erfahre ich aber nur, wenn ich bestimmte Parameter messtechnisch erfasse. Auch eine haustechnische Anlage kann Oberwellen absondern. Auch dies kann ich nur mit der entsprechenden Messtechnik feststellen. Also gibt es zwei Möglichkeiten. Entweder ich verwende einen Leistungsschalter wie den Masterpact MTZ, ein digitales Modul zur Oberwellenanalyse sowie ein Kommunikationsmodul, mit dem die Daten in eine übergeordnete Cloud weitergegeben werden können. Wenn ich mir diese Daten nach einer gewissen Zeit anschaue, detektiere ich vielleicht permanente Oberwellen und kann entsprechende Maßnahmen zu deren Beseitigung einleiten. Eine zweite Möglichkeit ist, meine bestehende Anlage einfach mit einem Messgerät nachzurüsten, das bis zur 42. oder 50. Oberwelle misst. Wenn ich eine größere und komplexere Anlage habe, dann empfehle ich unser PowerLogic ION9000. Dies ist ein hochwertiges Netzqualitätsmessgerät mit 365-Tage-Tracking-Funktion, bei dem ich bestimmte Regeln für Benachrichtigungen hinterlegen und mit dem ich viele unterschiedliche Use Cases abdecken kann. In Wohn- oder gewerblich genutzten Gebäuden sowie kleineren Fabriken reicht ein einfacheres Messgerät wie das PowerLogic ION5000, das auch eine Oberwellenanalyse bietet.

Anzeige

Im Rahmen seiner alljährlichen Fachpressekonferenz, dieses Mal am französischen Standort Grenoble, stellte Schneider Electric wieder zahlreiche neue Lösungen für den Schaltanlagenbau vor. Der Fokus lag dabei auf neuen Tools zur Erfassung und Analyse der Netzqualität für eine sichere und qualitativ hochwertige Energieversorgung. Im Gespräch mit dem SCHALTSCHRANKBAU erläutert zudem Markus Hettig, Vice President Building Business DACH bei Schneider Electric, die Bedeutung der neuen Mess- und Analysefunktionen für Schaltanlagenbauer, -planer und -betreiber und beschreibt Möglichkeiten, wie ein solcher Mehrwert auch zukünftig sichergestellt werden kann.

Anzeige

In modernen Industrieanlagen nimmt die Anzahl dezentraler Steuer- und Bedieneinheiten weiter zu, um direkt vom Feld aus Maschinen und Prozessabläufe ansteuern und beobachten zu können. Gerade bei kleinformatigen Gehäusen und dichter Bestückung kann die anfallende Verlustwärme zu Leistungsbeeinträchtigungen bis hin zum Ausfall temperaturempfindlicher Schaltelektronik führen. Mit kompakten Kühllösungen lässt sich eine kontinuierliche Wärmeabfuhr gewährleisten, die maßgeblich zur langlebigen Funktionstüchtigkeit der Schaltelemente beiträgt.

Anzeige
Anzeige

Ein Fokus von Aucotec auf der SPS IPC Drives ist eine neue Engineering-Lösung zur automatisierten, IEC-konformen Beschreibung digitaler Umspannwerke. Die Definitionen von Konfiguration und Strukturen der Schutz- und Leittechnik müssen nach IEC 61850 im Format SCL (Substation Configuration Language) erfolgen, doch viele Engineeringtools tun sich schwer mit einer effizienten Normumsetzung und dem Verständnis für die neutrale SCL. Die Lösung kombiniert nun die elektrotechnische Planung mit normgerechter Schaltanlagenbeschreibung.

Die Weidmüller Software M-Print Pro eCAD nutzt Konstruktionsdaten effizient und übergreifend: Sie ist dafür ausgelegt, den Datenexport aus Eplan Electric P8 zu vereinfachen und Kosten zu reduzieren. Denn der wachsende Kostendruck in der Industrie erfordert es, den Konstruktionsaufwand stetig zu optimieren und zu standardisieren.

Anzeige

Hohe Flexibilität und minimaler Platzbedarf – nur zwei zentrale Anforderungen an industrielle Schalt- und Steuerschränke, mit denen sich Schaltschrankbauer heute konfrontiert sehen. Gleichzeitig schafft die Digitalisierung neue Möglichkeiten im Engineering-Prozess. Aktuelle Zahlen beziffern das Einsparpotenzial auf über 40 Prozent. Was das konkret bedeutet, zeigt zum Beispiel ein neuer grafischer 3D-Konfigurator für Systemschränke von Siemens, mit dem sich Schaltschrankgehäuse individuell und durchgängig digital planen und bestellen lassen.

Die Suite X ist die nächste Generation der E-CAD-Lösung von WSCAD für gewerkeübergreifendes Arbeiten in den Disziplinen Elektrotechnik, Schaltschrankbau, Verfahrens- und Fluidtechnik, Gebäudeautomation und Elektroinstallation. Sie ist schneller als ihre Vorgängerversionen und verfügt über eine neu gestaltete Benutzeroberfläche sowie zahlreiche Verbesserungen. Die WSCAD AR App für Augmented Reality im Schaltschrank wurde um die aktive Verdrahtung per Tablet oder Smartphone erweitert.

Zunehmende Komplexität und hoher Kostendruck im Schaltschrank- und Anlagenbau erfordern eine immer effizientere Prozessgestaltung. Umfassende und durchgängige Lösungsansätze sind eine wichtige Voraussetzung, um Effizienz-Potenziale bei der Klemmenleistenprojektierung zu erschließen. Benötigt wird hier eine intelligente Software, die den komplexen Prozess von der Planung bis zur Montage unterstützt.

Wächter Packautomatik ist ein gefragter Spezialist für sekundäre Verpackungsanlagen. In seinen Maschinen und Anlagen verwendet das Unternehmen Reihenklemmen mit Push In-Anschlusstechnologie aus der Klippon Connect A-Reihe von Weidmüller. Zum Einsatz kommt das Universal- und Applikationsprogramm.

Lösungsanbieter Eplan stellt zur SPS IPC Drives die kommende Version 2.8 von Eplan Smart Wiring vor. Drei markante Schwerpunktthemen wurden in der Software zur Verdrahtung im Schaltschrank-/anlagenbau realisiert: die mögliche Gliederung in Teilprojekte, ein neuer Prüfmodus zur Unterstützung der Fertigung und mehr Transparenz in der Anwendung der Software. Mit den neuen Features soll ein durchgängiger Prozess von der Schaltschrankplanung über die systemgeführte Verdrahtung bis zur effizienten Schaltschrankfertigung realisiert werden.

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige