Warum ist die Flanschplatte so warm?

Schaltschrank-Tipps von Rittal

Dipl.-Ing.(Uni) Hartmut Lohrey,
Leiter Marketing
Training / Support, Rittal

Warum ist die Flanschplatte so warm?

Dies ist zwar eine eher seltene Frage an Rittal, doch sie kommt von Zeit zu Zeit immer wieder auf, wenn es um Energieverteiler mit Leiterströmen > 200 A geht.

Für die punktuelle Erwärmung von Betriebsmitteln im Schaltschrank kommen unterschiedliche Ursachen in Frage. Bei Strom führenden Bauteilen, wie Leitern Klemmen, Schutz- und Schaltgeräten etc., sind häufig schlechter Kontakt, zu dichte Packung im Schrank, unzureichende Wärmeabgabeflächen oder schlichtweg falsche Dimensionierung (am Belastbarkeitslimit) der Grund dafür, dass die Strom-Wärmeverluste zu „Hot-Spots“ und in der Folge zu Isolationsschäden mit Kurzschlussfolge oder zu Brandauslösung führen.

Was kann aber die Ursache sein, wenn passive mechanische Bauteile wie beispielsweise die Flanschplatte eines Kompaktschaltschrankes oder die Befestigungstraversen eines Sammelschienensystems bei Infrarotinspektionen durch übermäßige Temperaturen auffallen?

In der wichtigen Norm für den Schaltschrankbauer, der DIN EN 61439-1, findet sich ein Hinweis im Unterpunkt 10.10.4 „Bauart Nachweis der Erwärmung … durch Begutachtung“.

Dabei ist darauf zu achten, dass Leiter, die Ströme über 200 A tragen, und benachbarte Konstruktionsteile so angeordnet sind, dass Wirbelströme und Hystereseverluste minimiert werden. Hier werden die Effekte des Magnetfeldes, das jeden fließenden Strom umgibt, angesprochen. Dieses Magnetfeld steht senkrecht zur Stromrichtung und kann in leitenden Materialien Wirbelströme sowie Ummagnetisierung und eine damit einhergehende starke lokale Wärmeentwicklung verursachen.

In der Praxis bedeutet das, dass bei räumlich getrennter Führung von Hin- und Rückleitern (nicht als Kabel) z.B. in Form von Basis isolierten Einzelleitern oder Sammelschienen, die Abstände möglichst gering zu halten sind. Zudem sind Befestigungsteile und metallische Flächen, durch die solche Leiter senkrecht zur Fläche geführt werden, möglichst dünn und aus schlechter leitendem Material oder gar aus Isolierstoff auszuwählen.

Kabel, bei denen die Leiter sehr kompakt miteinander geführt werden, weisen Magnetfeld-Effekte nicht auf, da zu jedem Zeitpunkt die Summe der hin- und rücklaufenden Ströme gleich ist. Da die Richtung der Magnetfelder dieser Teilströme entgegengesetzt verläuft, werden sie dadurch weitgehend kompensiert. Somit kommt es nicht oder nur in unmerklichem Ausmaß zur Wirbelstrom- und Ummagnetisierungserwärmung.

 

Noch Fragen?
Rufen Sie mich an:

Hartmut Lohrey
Telefon 02772/505-2757

|
Ausgabe:

Das könnte Sie auch Interessieren

Bild: WSCAD GmbH
Bild: WSCAD GmbH
Online-Portal mit verbessertem Datenformat

Online-Portal mit verbessertem Datenformat

Um schneller arbeiten zu können, sind Elektrokonstrukteure und Gebäudeplaner auf aktuelle und geprüfte Produktdaten und Symbole von unzähligen elektrotechnischen Komponenten angewiesen. Zudem nehmen Wert und Wichtigkeit solcher Artikeldaten mit fortschreitender Prozessdigitalisierung in Unternehmen immer mehr zu.

Bild: IMS Connector Systems GmbH
Bild: IMS Connector Systems GmbH
Intelligente Anschlusstechnik für die Industrieautomation

Intelligente Anschlusstechnik für die Industrieautomation

Mit zunehmender Digitalisierung müssen immer mehr Leistungselektronik, Mess- und Sensortechnik auf kleinem Raum verbaut werden. Deshalb braucht es möglichst kompakte, miniaturisierte Lösungen, die sich auf der Feldebene mit geringem Platzbedarf installieren lassen. Der Spezialist für Hochfrequenz-Verbindungstechnik IMS Connector Systems hat einen intelligenten Steckverbinder entwickelt, mit dem sich die Zustandsüberwachung des Energiebezugs direkt in die Anschlusstechnik verlagern lässt.